§4.6 Quantum Chromodynamics
Let's compute the β-function of $Q C D$. For this we us the following method:
Minimal Subtraction:
Bare coupling g_{B} has poles as a function of space-time dimensionality d
\rightarrow residues fixed by requiring g_{R} to be regular as $d \rightarrow 4$
Suppose $\left[g_{B}\right]=\Lambda^{\Delta(d)}$, for some $\Delta(d)$, e.g. for non-abelian gauge theories

$$
\begin{aligned}
& {\left[\frac{1}{4} g_{B}^{-2} F_{\mu \nu}^{\alpha} F^{\alpha \mu \nu}\right]=\Lambda^{d} } \\
\Rightarrow & {\left[g_{B}\right]=\Lambda^{(4-d) / 2} \rightarrow \Delta(d)=\frac{4-d}{2} }
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
& \frac{g_{B}(d) k^{-\Delta(d)}}{\text { dimensionless }}=g(k, d)+\sum_{\nu=1}^{\infty} \Sigma^{-v} b_{\nu}(g(k, d)) \text { (1) } \\
& \text { where } \varepsilon=d-4 \begin{array}{l}
\text { coming from } \\
\text { divergent loop } \\
\text { amplitudes in } d=4
\end{array}
\end{aligned}
$$

Now differentiate eq. (1) by K :

$$
\begin{align*}
& \rightarrow K \frac{\partial}{\partial K}\left(g_{B} k^{-\Delta(d)}\right)=-\Delta(d) g_{B} k^{-\Delta(d)} \\
& =\underbrace{\frac{\partial^{2}}{\partial k} g(k, d)}_{=\beta(g, d)}+\sum_{\nu=1}^{\infty} b_{\nu}^{\prime}(g) \beta(g, d) \Sigma^{-\nu} \tag{2}
\end{align*}
$$

where $b_{v}^{\prime}(g) \equiv \frac{\partial}{\partial g} b_{r}(g)$
Write

$$
\Delta(d)=\Delta+c(d-4)
$$

\rightarrow left-hand side of (2) becomes

$$
-c g \varepsilon-\left[\Delta g+b_{1}(g) c\right]-\sum_{\nu=1}^{\infty} \varepsilon^{-\nu}\left[c b_{\nu+1}(g)+\Delta b_{\nu}(g)\right](z)
$$

\rightarrow highest power of ε is 1 , so the same must be true for the rho of (2):

$$
\beta(g, d)=\beta(g)+\alpha(g) \varepsilon
$$

(no negative powers of Σ as β is a finite function at $\varepsilon=0$) equating terms on the and rus of (2) Gives:

$$
\alpha(g)=-c g
$$

Inserting back into (2) gives:

$$
\begin{align*}
r h s= & \beta(g)-c g \varepsilon+\sum_{v=1}^{\infty} b_{v}^{\prime}(g)(\beta(g)-c g \varepsilon) \varepsilon^{-\nu} \\
= & -c g \varepsilon+\beta(g)-b_{1}^{\prime}(g) c g \\
& +\sum_{v=1}^{\infty}\left(b_{v}^{\prime}(g) \beta(g)-b_{v+1}^{\prime}(g) c g\right) \varepsilon^{-1} \tag{4}
\end{align*}
$$

Comparing with (3) gives:

$$
\begin{equation*}
s(g)=-\Delta g-b_{1}(g) c+b_{1}^{\prime}(g) c g \tag{5}
\end{equation*}
$$

Equating polar terms in Σ gives the following recursion relation:

$$
c b_{2+1}(g)-c g b_{r+1}^{\prime}(g)=-\Delta b_{\nu}(g)-b_{2}^{\prime}(g) \beta(g)
$$

$\rightarrow b_{v+1}$ is determined from b_{r} and hence from b,
Specifying to non-abelian gauge theories, we have $c=-\frac{1}{2}$ and $\Delta=0$, thus:

$$
\begin{equation*}
\rho(g)=\frac{1}{2}\left[b_{1}(g)-g b_{1}^{\prime}(g)\right] \tag{6}
\end{equation*}
$$

Now we apply our result to $Q C D$: QCD is non-Abelian gauge theory with

- gauge group: suck)
- matter content! spin $\frac{1}{2}$ particles known as "quarks"
u, c, and quarks with $\left.u c_{1}\right)_{e}$ charge $2 e / 3$, and d, s, and b quarks with u(1)e charge $-e / 3$
$\rightarrow 6$ "flavors"
quarks of each flavor come in 3 "colors"
\rightarrow fundamental representation of $\operatorname{su}(3)$
- Baryons (protons, neutrons) are color-nentral bound states of 3 quarks (using anti-sym tenser $p=\varepsilon_{i j k} u^{i} d^{j} d^{k}$)
- Mesons are color-nentral bound states of quarks and anti-quarks.
\rightarrow renormalized gauge coupling is given by $g_{R}=g_{B}\left[1+\frac{g_{B}^{2}}{4 \pi^{2}} \ln \left(\frac{\Lambda}{k}\right)\left(\frac{11}{12} C_{1}-\frac{1}{3} C_{2}\right)+O\left(g_{B}^{4}\right)\right]$

Recall that the term $\ln \left(\frac{\Lambda}{k}\right)$ comes from

$$
X=2 \pi^{2} i \int_{K}^{\Lambda} \frac{d q}{q}=2 \pi^{2} i \ln \left(\frac{\Lambda}{R}\right)
$$

Alternatively, we can evaluate x by writing

$$
x=i \int_{0}^{\infty} \frac{2 \pi^{2} q^{d-1} d q}{\left(q^{2}+k^{2}\right)^{2}}
$$

where d is allowed to approach 4 at the end and K is infrared cut-off:
evaluate $\frac{\delta^{4} \Gamma[A]}{\delta A^{4}}$ not at $A=0$
but instead compute

$$
\left.\frac{\delta^{4} T[A]}{\delta A^{4}}\right|_{g A=k}
$$

\rightarrow propagators effectively become

$$
\frac{1}{q^{2}+k^{2}}
$$

Analytically continuing d to \mathbb{C}, we get

$$
\begin{aligned}
x & =-i \pi^{2}\left(\frac{d}{2}-1\right) k^{d-4} \pi / \sin \left(\left(\frac{d}{2}-2\right) \pi\right) \\
& =-2 i \pi^{2}\left[\frac{1}{d-4}+\ln k+\cdots\right],
\end{aligned}
$$

thus we have

$$
\begin{align*}
g_{B}=g_{R} & +\frac{g_{R}^{3}}{4 \pi^{2}}\left(\frac{11}{12} C_{1}-\frac{1}{3} C_{2}\right)\left(\frac{1}{d-4}+\ln K+\cdots\right) \\
& +G\left(g_{R}^{5}\right) \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
C_{\gamma \alpha \beta} C_{\delta \alpha \beta} & =g^{2} C_{1} \delta_{\gamma \delta} \\
\operatorname{tr}\left\{t_{r} t_{\delta}\right\} & =g^{\alpha} C_{2} \delta_{\gamma \delta}
\end{aligned}
$$

From (7) we get

$$
b_{1}(g)=\frac{g^{3}}{4 \pi^{2}}\left(\frac{11}{12} C_{1}-\frac{1}{3} C_{2}\right)+O\left(g^{5}\right)
$$

and from

$$
\beta(g)=\frac{1}{2}\left[b_{1}(g)-g b_{1}^{\prime}(g)\right]
$$

we then have

$$
\begin{equation*}
\beta(g)=-\frac{g^{3}}{4 \pi^{2}}\left(\frac{11}{12} C_{1}-\frac{1}{3} C_{2}\right)+O\left(g^{5}\right) \tag{8}
\end{equation*}
$$

For su(3) theory with n_{f} quarks:

$$
\begin{gathered}
C_{1}=3, \quad C_{2}=n_{f / 2} \\
(8) \rightarrow \beta(g)=-\frac{g^{3}}{4 \pi^{2}}\left(\frac{11}{4}-\frac{1}{6} n_{f}\right)+O\left(g^{5}\right)
\end{gathered}
$$

For $n_{f} \leq 16$ theory is asymptotically free!

Now let us solve the equation

$$
\begin{aligned}
& k \frac{d}{d k} g(k)=-\frac{g^{3}(k)}{4 \pi^{2}}\left(\frac{11}{4}-\frac{1}{6} n_{f}\right) \\
\rightarrow & \alpha_{s}(k) \equiv \frac{g^{2}(k)}{4 \pi}=\frac{12 \pi}{\left(33-2 n_{f}\right) \ln \left(k^{2} / k^{2}\right)}
\end{aligned}
$$

Check:

$$
\begin{aligned}
k \frac{d}{d k} g^{2} & =122 g \frac{d}{d k} g \\
& =-\frac{g^{4}}{2 \pi^{2}}\left(\frac{11}{4}-\frac{1}{6} n_{f}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
k \frac{d}{d k} \alpha_{s}\left(a_{2}\right) & =\frac{12 \pi}{\left(33-2 n_{f}\right)}\left(-\frac{2}{\ln \left(k^{2} / /^{2}\right)^{2}}\right) \\
& =-2 \pi \frac{1}{\left(\frac{11}{4}-\frac{1}{6} n_{f}\right) \ln \left(k^{2} / /^{2}\right)^{2}} \\
& =-\frac{\left(\frac{11}{4}-\frac{1}{6} n_{f}\right)}{2 \pi^{2}} \underbrace{4 \pi}_{\left.=\frac{4 \pi^{3}}{\left[\left(\frac{11}{4}-\frac{1}{6} n_{f}\right) \ln \left(k^{2} / /^{2}\right)\right.}\right]^{2}}
\end{aligned}
$$

